Cosmological WIMPs, Higgs Dark Matter and GLAST

Alexander Sellerholm Stockholm university, CoPS

Outline

- CoPS of Stockholm
- GLAST :
 - ★ GLAST Sweden
 - **★** GLAST Dark Matter & New Physics
- Cosmological WIMPs
 - ★ Generic WIMPs
 - ★ Inert Higgs Doublet

CoPS people working on DM

Seniors

- Lars Bergström (prof)
- Jan Conrad (fo-ass)
- Joakim Edsjö (fo)
- Christine Meurer (Post-doc)

PhD students

- Yashar Akrami
- Michael Gustafsson
- Erik Lundström
- Anders Pinzke
- Sara Rydbeck
- Patrick Scott
- AS

+ string-theory, GR, SN cosmology...

Further info : www.cops.physto.se

What are we working on?

- Dark matter: distribution in halos, neutralinos, Inert Higgs and Kaluza Klein particles
- GLAST: Indirect detection, Cosmological WIMPs, Extragalactic Gamma-ray Background
- Dark SUSY: MSSM Dark Matter calculations; vertices, Mass spectrum, Relic density...
- Dark Stars
- Modified Gravity (not MOND!)
- ...

Research

- Dark Matter & New Physics (J. Conrad is working group coordinator)
- High-Energy Emission in Gamma-Ray Bursts
- Active Galactic Nuclei
- Beam Tests

CoPS

- Lars Bergström
- Jan Conrad (PI)
- Joakim Edsjö
- Christine Meurer
- AS

Additional people

- Stefan Larsson (Astro-SU)
- Felix Ryde (KTH)
- Per Carlson (KTH)
- Tomi Ylinen (KTH)
- Niklas Karlsson (KTH-SLAC)
- Wlodzimierz Klamra (KTH)
- Staffan Carius (Kalmar)

Further info :

http://www.particle.kth.se/~tomiy/glast-sweden/

GLAST Dark Matter & New

-The GLAST LAT team pursuis complementary searches for signatures of particle dark matter.

-GLAST has the potential to either discover or to constrain particle dark matter and establish contact between LHC discovery and Dark Matter

- GLAST will be able to image Dark Matter Halo

- GLAST Launch foreseen for end of this year. Stay tuned ! Wext

Together with people from

SLAC - Stanford, Ohio State, Laboratoire de Physique Théorique et stroparticules, INFN and Università degli Studi di Roma, Tor Vergata...

Indirect Detection

Cosmological WIMPs

- Indirect detection of DM using γ rays
- Diffuse signal with contributions summed over all redshifts.
- Unique spectral features;
 Broaded, asymmetrical lines & continuum bump.
- Signal less sensitive to DM halo profiles

The differential γ - ray flux: (Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

$$\frac{d\phi_{\gamma}}{dE_0} = \frac{\sigma v}{8\pi} \frac{c}{H_0} \frac{\bar{\rho}_0^2}{M_{\chi}^2} \int dz \ (1+z)^3 \frac{\Delta^2(z)}{h(z)} \frac{dN_{\gamma}(E_0 \ (1+z))}{dE} e^{-\tau(z,E_0)}$$

The differential γ - ray flux: (Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

$$\frac{d\phi_{\gamma}}{dE_0} = \frac{\sigma v}{8\pi} \frac{c}{H_0} \frac{\bar{\rho}_0^2}{M_{\chi}^2} \int dz \ (1+z)^3 \frac{\Delta^2(z)}{h(z)} \frac{dN_{\gamma}(E_0 \ (1+z))}{dE} e^{-\tau(z,E_0)}$$

Particle physics

Astro physics

The differential γ - ray flux: (Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

$$\frac{d\phi_{\gamma}}{dE_{0}} = \underbrace{\frac{\sigma v}{8\pi}}_{R_{0}} \frac{c}{M_{\chi}^{2}} \int dz \ (1+z)^{3} \frac{\Delta^{2}(z)}{h(z)} \frac{dN_{\gamma}(E_{0} (1+z))}{dE} e^{-\tau(z,E_{0})}$$

Particle physics
 Cross section

Astro physics

The differential γ - ray flux: (Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

$$\frac{d\phi_{\gamma}}{dE_{0}} = \underbrace{\frac{\sigma v}{8\pi} \frac{c}{H_{0}} \frac{\bar{\rho}_{0}^{2}}{M_{\chi}^{2}}}_{8\pi} \int dz \ (1+z)^{3} \frac{\Delta^{2}(z)}{h(z)} \frac{dN_{\gamma}(E_{0} (1+z))}{dE} e^{-\tau(z,E_{0})}$$

 Particle physics Cross section
 WIMP Mass

Astro physics

The differential γ - ray flux: (

(Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

$$\frac{d\phi_{\gamma}}{dE_{0}} = \underbrace{\frac{\sigma v}{8\pi} \frac{c}{H_{0}} \frac{\bar{\rho}_{0}^{2}}{M_{\chi}^{2}}}_{8\pi} \int dz \ (1+z)^{3} \frac{\Delta^{2}(z)}{h(z)} \frac{dN_{\gamma}(E_{0} \ (1+z))}{dE} e^{-\tau(z,E_{0})}$$

- Particle physics Cross section
 WIMP Mass γ - ray yield per annihilation
- Astro physics

Cosmology

The differential γ - ray flux:

(Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

$$\frac{d\phi_{\gamma}}{dE_{0}} = \underbrace{\frac{\sigma v}{8\pi} \frac{c}{H_{0}} \frac{\bar{\rho}_{0}^{2}}{M_{\chi}^{2}}}_{8\pi} \int dz \ (1+z)^{3} \frac{\Delta^{2}(z)}{h(z)} \frac{dN_{\gamma}(E_{0} \ (1+z))}{dE} e^{-\tau(z,E_{0})}$$

- Particle physics Cross section
 WIMP Mass γ - ray yield per annihilation
- Astro physics
 Optical depth

Cosmology

STOCKHO STOCKHO + SWITCH

The Signal

The differential γ - ray flux:

(Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

- Particle physics Cross section
 WIMP Mass γ - ray yield per annihilation
- Astro physics
 - **Optical depth**
 - DM structure, halo properties and
 - evolution
- Cosmology

KHO KHO KHO KHO

The Signal

The differential γ - ray flux: (Ullio, Bergström, Edsjö & Lacey Phys.Rev. D66 (2002) 123502.)

 $\frac{d\phi_{\gamma}}{dE_{0}} = \underbrace{\frac{\sigma v}{8\pi H_{0}} c \left(\bar{\rho}_{0}^{2}\right)}_{8\pi H_{0}} \int dz \underbrace{(1+z)^{3} \Delta^{2}(z) dN_{\gamma}(E_{0}(1+z))}_{h(z)} dE - \tau(z,E_{0})}_{h(z)} dE$

- Particle physics Cross section
 WIMP Mass γ - ray yield per annihilation
- Astro physics
 - Optical depth
 - DM structure, halo properties and evolution
- Cosmology

Expansion of the universe Cosmological parameters

Particle physics

Yield:

$$\frac{dN_{\gamma}(E)}{dE} = \sum_{X} b_{\gamma X} n_{\gamma X} \delta\left(E - M_{\chi} \left(1 - M_{\chi}^2/4 M_{\chi}^2\right)\right) + \sum_{F} b_F \frac{dN_{\text{cont}}^F}{dE}(E)$$

Typical Cross section: $\sigma v \sim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ (Thermal Relic) $b_{\gamma\gamma} \sim b_{z\gamma} \sim 10^{-3}$ (1-loop suppression)

Masses:

- MSSM 50 GeV < M_{χ} < few TeV
- KK $\sim 0.5 < M_{\chi} < \text{few TeV}$
- IDM 45 < M_{χ} < 75 GeV and M_{χ} > 0.5 TeV

Largest contribution from small halos, formed in an earlier, denser universe. We cutoff at $10^5~M_{\odot}.$

Extending to lower masses: Increases signal <u>but</u> increases uncertainties.

HALO properties II Sub Structure

- Higher concentration parameters than parent halo
 - generally formed in higher density environments
 - outskirts depleted by tidal stripping

ho ² plot of "Via Lactea", Diemand et al.

 $b_{\gamma\gamma} = 10^{-3}$

Inert (Higgs) Doublet Model

Extra scalar doublet with no direct coupling to fermions (odd under Z₂ symmetry)

Three new fields:

- I charged
- 2 scalar,
 - the lightest one could be the WIMP!

IDM Dark Matter:

- E. Ma, Phys. Rev. D 73, 077301 (2006)
- R. Barbieri et. al., Phys.Rev.D 74 (2006) 015007
- L. Lopes Honorez et. al., JCAP 0702, 028 (2007)
- M. Gustafsson et. al., accepted in PRL (2007)

Claim by De Boer et al.(2005) that the EGRET data is compatible with a 60 GeV WIMP, if the DM is distributed in a non-standard way, i.e. the EGRET GeV anomaly originates from WIMP

annihilations

However, it was showed that the model overproduced positrons.... Bergström et al. (2005)

SHALL STOCKHO

Prospects for GLAST

Fast GLAST simulation for Generic WIMPs: $\chi\chi \rightarrow \begin{array}{c} 99.999 \ \% \ b\overline{b} \\ 0.001 \ \% \ \gamma\gamma \end{array}$

Assumptions:

- Perfect analysis.
- Charged particle
 contamination: +10 % of
 the blazar background

Line sensitivity for GLAST and IDM

Conclusions:

- WIMPs could possible give an interesting contribution to the EGBR.
- GLAST is sensitive to a range of DM models and astrophysical scenarios.