Neutrinos From Solar WIMPs

Mattias Blennow Royal Institute of Technology

(in collaboration with J. Edsjö and T. Ohlsson)

Partikeldagarna 2007

KA-salen, CTH Göteborg

Outline

- WIMP capture
- Neutrino propagation
 - Neutrino interactions
 - Neutrino oscillations
- Conclusions

WIMP capture

- WIMPs from the halo scatter in the Sun and become gravitationally bound
- Sink to the solar core following subsequent scatterings

Silk, Olive, Srednicki, Phys. Rev. Lett. 55 (1985) 257 Srednicki, Olive, Silk, Nucl. Phys. B 279 (1987) 804 Krauss, Freese, Spergel, Press, Astrophys. J. 299 (1985) 1001 Freese, Phys. Lett. B 167 (1986) 295 Krauss, Srednicki, Wilczek, Phys. Rev. D 33 (1986) 2079 Gaisser, Steigman, Tilav, Phys. Rev. D 34 (1986) 2206

Here be WIMPs!

Neutrino production

- Neutrinos can be a byproduct of several WIMP annihilation channels
- We simulate the fluxes of neutrinos per annihilation into a specific channel
- The fluxes for a specifc DM candidate can then be deduced from the branching ratios and annihilation rates

Simulation details

- Simulations are performed for the following WIMP masses (in GeV):
 - 10, 25, 50, 80.3, 91.2, 100, 150, 176, 200, 250, 350, 500, 750, 1000, 1500, 2000, 3000, 5000, and 10000
- 2.5 million annihilations simulated per mass and annihilation channel

Neutrino production results

Generic example: $\tau^{+}\tau^{-}$ annihilation channel, WIMP mass 250 GeV

Neutrinos From Solar WIMPs, Mattias Blennow, KTH - Partikeldagarna 2007 (Sep 21)

709.XXX

arXiv.org

Neutrino Interactions

- Neutral- and charged-currents
- NC degrade neutrino energy
- NC does not affect flavor composition

Neutrino Interactions

- CC interaction cross-sections are flavor dependent due to the τ mass
- Accounted for in interaction routines
- Among the CC interactions, only $\nu^{}_{\tau}$ interactions provide a secondary flux

Neutrino interaction results

709.XXX

arXiv.org

Neutrino oscillations

- Occur since neutrino flavor eigenstates are not equivalent to the neutrino mass eigenstates
- Six extra free parameters
- Two mass squared differences $\Delta m_{\rm 21}^{\ 2}$ and $\Delta m_{\rm 31}^{\ 2}$
- Three mixing angles θ_{12} , θ_{23} , θ_{13}
- One complex phase δ

10

Neutrino oscillation parameters

- Neutrino mixing status (2σ bound): Maltoni, Schwetz, Tórtola, Valle, New J. Phys. 6 (2004) 122
 - $sin^2(\theta_{12}) \sim 0.3 (0.25-0.34)$
 - $sin^2(\theta_{23}) \sim 0.5 (0.38-0.64)$

 $sin^2(\theta_{13}) \sim 0.0 \ (< 0.028)$

 $\delta \sim ??$

• Neutrino mass squared differences $\Delta m_{21}^2 \sim 8.1 \cdot 10^{-5} \text{ eV}^2 (7.5-8.7)$

 $|\Delta m_{31}^2| \sim 2.2 \cdot 10^{-3} \text{ eV}^2 (1.7-2.9)$

Oscillations of "ordinary" solar neutrinos

- Third mass eigenstate decouples
- Insignificant amount of neutrino interactions
- Low energy
- Loss of coherence
- Only $\nu_{_{e}}$

WIMP neutrino oscillations

- Energy is above the high MSW resonance at production (third state does not decouple)
- No certain coherence loss
- Sizable interactions

13

 $dN_{v}/dz \ (ann^{-1})$

10

10

10

-2

-3

 $0.2 \ 0.3$

0.4

 v_{τ} (secondary)

0.8

0.9

 $z = E_v / m_v$

0.5 0.6 0.7

-1

-2

 v_o (std. osc.)

 $v_{e}^{r}(\theta_{13} = 10^{\circ})$ $v_{11} + v_{\tau} (\theta_{13} = 10^{\circ})$

 $v_{\mu} + v_{\tau}$ (std. osc.)

......

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

10

10

 $z = E_v / m_v$

Propagation to 1 AU

- Obviously no interactions after R_{SUN}
- Straightforward vacuum neutrino oscillations ;

Neutrino oscillation results At 1 AU:

Best-fit v-osc param:

 $\theta_{13} = 10^{\circ}$:

Neutrinos From Solar WIMPs, Mattias Blennow, KTH - Partikeldagarna 2007 (Sep 21)

Propagation to detector

- Experiments will not be located at exactly 1 AU distance from the Sun
- Evolve to detector

Propagation to detector

- Example detector at the south pole averaged over the detection location over one year
- The main effect is to smoothen the oscillatory pattern
- This is due to the eccentricity of the Earth orbit

Detector flux results

Best-fit parameters:

709.XXX

arXiv.org

Detector flux results

- In principle, the oscillatory pattern will remain if statistics for parts of the year is large enough or *L/E* behavior is observed, however ...
- ... energy resolution becomes an issue
- With a WIMP candidate providing monochromatic neutrinos, energy resolution is irrelevant

Comparison to previous results

- Similar study provided by Cirelli et al., NPB 727 (2005) 99
- Differences:
 - Their study focuses on the neutrino enegry spectra while our study is event based
 - Our study is fully implemented as a MC usable with DarkSUSY and experimental MCs
 - Minor discrepancies

Technicalities

- Annihilations and interactions simulated using Pythia 6.400
- Interaction uses CTEQ6 parton distribution functions

- Neutrino oscillations can result in significant changes in the neutrino spectra
- ν_{μ} and ν_{τ} mix already during propagation out of the Sun
- $\nu_{\rm e}$ is mainly mixed during the vacuum propagation to the Earth

- Results are not very sensitive to exact neutrino oscillation parameters
- For neutralino DM
 - Usually less v_{τ} is produced
 - $-\nu_{\mu}$ flux reduced

• For KKDM

709.XXX

arXiv.org

- Annihilates into charged leptons (20 % each)
- Only τ decay before interacting
- Results in significant increase of ν_{μ} compared to the non-oscillation case (about a factor of four)

 Code written in a general format easily implementable by neutrino telescope Monte Carlos